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EVALUATING COKRIGING FOR IMPROVING SOIL

NUTRIENT SAMPLING EFFICIENCY

S. Han,  S. M. Schneider,  R. G. Evans

ABSTRACT. The spatial variability of soil texture and soil nitrate–N, P, and K was studied in two center–pivot irrigated fields
(89 ha total). Two soil texture components (clay and silt) were found to be correlated with soil nitrate–N, P, and K, and were
used as auxiliary variables in the cokriging procedure to estimate soil nitrate–N, P, and K at unsampled locations. With a
sampling density of 2.7 sites/ha (61 � 61 m grid) as the baseline, removal of 50% of the sampling sites resulted in a normalized
mean absolute error (NMAE) of 34.5%, 22.9%, and 15.3% for soil nitrate–N, P, and K, respectively. These numbers reduced
to 32.8%, 20.7%, and 12.0% when only 25% of the sampling sites were removed. The study showed that the cokriging
technique provided slightly better estimates than the ordinary kriging method for soil P and K at a higher sampling density
(>2.1 sites/ha). However, when a variable has a large random variation, such as the soil nitrate–N, cokriging did not provide
better estimates than ordinary kriging. The results of this study provide guidelines on the selection of kriging or cokriging
in improving the soil nutrient sampling efficiency.
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nderstanding the spatial distributions of soil
properties, particularly soil nitrate–N, P, and K,
within a field is important for the development of
site–specific fertilizer management strategies.

Because of limited resources, intensive soil sampling is
impractical.  Typically, soil samples are collected from only
a small number of sites in the field. The data at the sampling
locations are then used to predict values at unsampled
locations and thus to generate the spatial distributions.

Spatial interpolation techniques are needed to study the
spatial distributions of soil properties. If a soil property is
autocorrelated  in space, kriging methods, based on Mather-
on’s regionalized variable theory (Matheron, 1963), can be
utilized to provide the best linear unbiased estimates
(BLUE). Many researchers have applied the kriging tech-
niques to evaluate variability of soil physical and chemical
properties at the field level (Burgess and Webster, 1980a,
1980b; Meirvenne and Hofman, 1989; Paz et al., 1996).
Studies have shown that better precision of estimation can be
achieved and smaller sampling size is needed when using
kriging techniques than when using the conventional statisti-
cal approach (McBratney and Webster, 1983; Di et al., 1989;
Chung et al., 1995).

Kriging depends on computing an accurate semivario-
gram model from which estimates of variance can be
calculated.  A sufficient number of samples are needed to

Article was submitted for review in January 2002; approved for
publication by the Information & Electrical Technologies Division of
ASAE in March 2003.

The authors are Shufeng Han, ASAE Member Engineer, Engineering
Scientist, Deere and Company, Urbandale, Iowa; Sally M. Schneider,
Research Plant Pathologist, USDA–ARS, Fresno, California; and Robert
G. Evans, ASAE Member Engineer, Supervisory AgriculturalEngineer,
USDA–ARS, Sidney, Montana. Corresponding author: Shufeng Han,
Deere and Company, 4140 114th Street, Urbandale, IA 50322; phone:
515–331–4875;  e–mail: hanshufeng@johndeere.com.

develop an accurate semivariogram that can represent the
autocorrelation  of the soil property under consideration. On
the other hand, soil properties may be interdependent. The
property of interdependency suggests that we can estimate a
property whose values are difficult to measure from other
properties whose values are easier to determine. An extended
technique of kriging, called cokriging, can be applied in this
case. As examples, Yates and Warrick (1987) estimated the
gravimetric  moisture content using a cokriging procedure in
which the bare soil surface temperature and the percent sand
content were used as auxiliary variables. Vaughan et al.
(1995) predicted soil salinity at unsampled points by
cokriging soil–paste–measured electrical conductivity and
the apparent electrical conductivity at the surface. If accurate
cross–correlation functions can be determined, then cokrig-
ing can reduce the data requirement for the primary variable
and improve the precision of estimation.

A number of studies have been done on applying the
kriging and cokriging techniques to estimate soil nutrient
distributions. As examples, Meirvenne and Hofman (1989)
studied the spatial structure of soil nitrate–N in a 1 ha polder
field and determined the number of samples required to
estimate the mean nitrate–N content by using the kriging
technique. Zhang et al. (1999) used cokriging with nonsym-
metric pseudo–cross–variograms to estimate soil nitrate–N
distributions at deeper layers by including soil nitrate–N
sample data at shallower layers. They found that cokriging,
compared with kriging, reduced the mean square error by
60% and used less than half the data for the estimation of
nitrate–N distributions. The main objective of this study was
to investigate the application of the cokriging technique for
estimating soil nitrate–N, P, and K by using soil texture
components as auxiliary variables. The potential application
of this technique is to reduce the cost of soil nutrient analysis.
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MATERIALS AND METHODS
Two adjacent center–pivot irrigated fields (89 ha total)

located in south central Washington State were selected for
the study. The soil was classified as Quincy loamy sand
(Xeric Torripsamments, mixed, mesic) with 2% to 15%
slopes. Typical crops in the area include potato, wheat, and
buckwheat in rotation. The cropping history and manage-
ment practices of the two fields were the same for the last
several years.

In March 1995, prior to the pre–planting fertilizer
application,  the experimental fields were sampled at
246 locations on a roughly 61 � 61 m grid. At each location,
three borings were done within a 2 m radius. The borings
were segmented into three depth increments (0 to 30 cm,
30 to 60 cm, and 60 to 90 cm), and the soil from all three
borings at each depth increment was aggregated. A total of
738 soil samples was collected.

Soil samples were analyzed in a commercial laboratory
for texture (sand, silt, clay), nitrate–N, P, K, S, and pH. Soil
texture, nitrate–N, and pH were analyzed for each of the three
soil layers, and soil P, K, and S were analyzed only for the top
soil layer. Soil texture, nitrate–N, P, and K from the 0 to
30 cm soil layer were used in this study. Because of the close
similarity in cropping history and management of the two
fields, the data were not separated by individual field for the
analysis.

A complete data set for each of the primary variables
(nitrate–N, P, K) was partitioned into two subsets: a
calibration data set, and a validation data set. The calibration
data set was used in the cokriging analysis, and the validation
data set was used to evaluate the accuracy of the cokriging
procedure. Two soil texture components (clay and silt) were
used as auxiliary variables. Another soil texture component
(sand) was found to be less correlated with soil nutrients and
was not used in the study. A normality test was performed for
each data set. When appropriate, the data set was log–trans-
formed to create a better normal distribution. Each data set
was also normalized to a zero mean and unit variance.
Finally, a geostatistical technique, cokriging, was applied to
estimate values at the validation sites by using the calibration
data set, with soil texture components as auxiliary variables.
The equations defining the cokriging algorithm can be found
in many references (Isaaks and Srivastava, 1989; Yates and
Warrick, 1987; Journel and Huijbregts, 1978). The general-
ized cokriging estimator is defined as a linear combination of
all the available sample data (Bogaert et al., 1995):
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λ  (pv = 1, ..., vpn , v = 1, ..., nv), are chosen
in such a way that the estimation is not biased, and the
variance of the estimation is minimized. The weights can be

determined by solving a set of linear equations defined by the
theoretical  semivariogram and cross–semivariogram be-
tween any two variables.

Finally, the estimated values were compared to the actual
sample values at the validation sites under different partitions
of the original data sets.

The accuracy of the cokriging procedure was evaluated by
two criteria: the normalized mean absolute error (NMAE),
and the normalized root mean square error (NRMSE). The
NMAE and NRMSE are defined by:
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where
�
�

� = estimate of property Z at location i
zi = true value of property Z at location i
i = 1, 2, ..., M
M = total number of points in the comparison.
Both the NMAE and NRMSE are measures of the global

average deviation between the estimated values and the true
values. The NRMSE is the most commonly used criterion,
although the NMAE was mentioned to be more robust than
the NRMSE (Journel, 1984).

RESULTS AND DISCUSSION
The descriptive statistics for the complete data set are

given in table 1 and include the total number of samples (n),
the mean, the standard deviation (SD), the maximum, the
minimum, and the coefficient of variation (CV). Soil
nitrate–N and texture components displayed large CVs,
indicating the large spatial variability for these soil proper-
ties. Both P and K exhibited a moderate spatial variability. To
investigate the degree of linear correlation between different
variables, Pearson correlation coefficients (table 2) were
calculated by the CORR procedure of the SAS software
(SAS, 1988). Nitrate–N, P, and K were all highly correlated
with the two texture components (P < 0.01), with the
exception of P with clay content (P > 0.05). The results
justified the selection of the texture components as the
auxiliary variables for estimating the nitrate–N, P, and K.

Table 1. Descriptive statistics for each complete data set.

Variable n Mean SD[a] Max. Min. Unit CV[b]

Nitrate–N 246 2.7 1.84 23.0 0.8 mg/kg 66.8

P 246 24.2 6.44 68.0 7.0 mg/kg 26.7
K 246 184 40.7 355 100 mg/kg 22.1

Clay 243 1.6 0.93 4.8 0.0 % 58.0
Silt 243 12.3 5.80 32.0 1.0 % 47.2

[a] SD = standard deviation
[b] CV = coefficient of variation (%).
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Table 2. Pearson correlation coefficients for each complete data set.[a]

Nitrate–N P K Clay Silt

Nitrate–N 1.000

P 0.098 1.000
K 0.186 0.179 1.000

Clay 0.222 0.113 0.205 1.000
Silt 0.202 0.254 0.306 0.538 1.000

[a] Underlined coefficients are statistically significant at the 0.01 probability
level.

Table 3. Normal distribution test for each complete data set.

Before Transformation After Log–Transformation

Variable W[a]
Normal

Dist. W[a]
Normal

Dist. P[b]

Nitrate–N 0.662 Rejected 0.962 Rejected
P 0.943 Rejected 0.977 Not rejected 0.13
K 0.937 Rejected 0.978 Not rejected 0.17

Clay 0.960 Rejected 0.966 Rejected
Silt 0.903 Rejected 0.976 Not rejected 0.09

[a] W = Shapiro–Wilk statistic (Shapiro and Wilk, 1965).
[b] P = significance level; normal distribution is not rejected at P > 0.05.

The Shapiro–Wilk statistic (W) was computed for each
complete data set to test the normality of the distributions
(Shapiro and Wilk, 1965). All variables were not normally
distributed (table 3). Early studies showed that soil chemical
properties are more closely log–normally distributed (Zhang
et al., 1992; Bahri et al., 1993). The log–transformation of the
data improved the normality of the distributions, as indicated
by the increased W values in table 3. To eliminate the scale
effect, all variables were normalized to a zero mean and unit
variance after the log–transformation. When the normalized
value was greater than 3, it was considered a probable outlier
and was removed from the data set. One probable outlier was
identified for each of the silt and nitrate–N data sets, and two
probable outliers were identified for each of the P and K data
sets.

Figure 1. The 124 calibration sites and 122 validation sites. About 50% of
the sampling sites are validation sites.

The 246 sampling sites were divided into two groups: one
group of calibration sites, and another group of validation
sites. About 50% of the total number of sites were chosen as
validation sites (fig. 1). The validation sites were selected to
have a systematical distribution across the field to minimize
the average distance (McBratney et al., 1981).

A data detrending method, based on a polynomial
regression of data against the coordinates, was applied to
each data set prior to the calculation of the semivariances. By
visual inspection of the semivariograms in four directions
(0�N, 90�N, 180�N, and 270�N), no obvious anisotropic
spatial dependence was found for the data sets. Therefore,
only the isotropic semivariogram models were used in this
study. In calculating the experimental semivariances, 17 dis-
tance (lag) classes were chosen to cover the range from 46 to
552 m. The distance spacing was not selected as a constant
in order to ensure that there were about the same number of
distance pairs within each class. The experimental semiva-
riograms and cross–semivariograms are shown in figure 2.
The experimental semivariances were then fitted to four
basic models –– a nugget model and three spherical models:
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where c0 is the nugget, and a1, a2, and a3 are the ranges for
each spherical model. The estimation of model coefficients
was based on the linear model of coregionalization (Bogaert
et al., 1995), and all the model coefficients are given in
table 4. The fitted semivariogram and cross–semivariogram
functions are shown in figure 2. All semivariogram models
exhibited a strong nugget effect, indicating the large
short–range variation.

A cokriging program (Bogaert et al., 1995) was used to
estimate soil nitrate–N, P, K values at each validation site,
which were compared with the sampling values at that site.
Plots of the estimated data against the measurement data at
the validation sites consistently showed under–estimation at
several sites with high nitrate–N, P, K values. The normalized
mean absolute error (NMAE) and the normalized root mean
square error (NRMSE) for soil nitrate–N, P, K estimation are
given in table 5.

The NMAE values were 34.5%, 22.9%, and 15.3% for soil
nitrate–N, P, and K, respectively. Soil nitrate–N displayed the
highest cokriging error, and soil K displayed the lowest error.
This result is expected from the difference in CV values for
these variables (table 1). In general, if a variable has a larger
random variation, a higher cokriging error is anticipated.

To investigate possible improvement in cokriging accura-
cy, 62 more sampling sites were added to the previous
calibration sites, which resulted in 75% validation sites
(fig. 3). Based on the expanded data set, semivariogram and
cross–semivariogram functions were recalculated, and the
cokriging procedure was performed. The NMAE and the
NRMSE for soil nitrate–N, P, K estimation are given in
table 5. The results indicated a 4.9%, 9.6%, and 21.6%
reduction in the estimation errors for soil nitrate–N, P, and K,
respectively. It seems that the random variation in soil
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Figure 2. Semivariogram and cross–semivariogram functions for soil nitrate–N, P, K, clay content, and silt content, using 50% of the sampling sites.

nitrate–N dominates, and improvement in cokriging accura-
cy was impossible without using a higher sampling density.

As the final comparison with the cokriging accuracy, the
ordinary kriging procedure was performed using the same
data sets without soil texture components. The NMAE and
the NRMSE are also shown in table 5. In general, ordinary
kriging performed about the same as cokriging for the test
data sets. However, cokriging showed some improvements
over ordinary kriging with 75% of the sampling data (n = 186)
for soil P and K.

CONCLUSIONS
Correlation between soil texture and soil nutrients seems

to justify the selection of the texture components as auxiliary
variables for estimating soil nitrate–N, P, and K using the
cokriging technique. It is of practical importance since the
analysis of soil nitrate–N, P, and K is more costly than that of
soil texture. The results of this study suggest that the
cokriging technique provides better estimates than the
ordinary kriging method, if the cross–semivariogram func–
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Table 4. Coefficients of the semivariogram and cross–
semivariogram models, using 50% of the sampling sites.

Nugget
Model

C0

Spherical
Model I

(a1 = 152.4 m)
C1

Spherical
Model II

(a2 = 304.8 m)
C2

Spherical
Model III

(a3 = 457.2 m)
C3

Nitrate–nitrate  0.491  0.057  0.044  0.151

Nitrate–clay –0.053  0.016 –0.080  0.173
Nitrate–silt –0.110  0.090 –0.078  0.140

P–P  0.510  0.158  0.028  0.060
P–clay –0.025  0.033 –0.072  0.071
P–silt  0.369 –0.107 –0.089  0.050
K–K  0.596  0.114  0.074  0.048

K–clay  0.163 –0.045  0.153 –0.060
K–silt  0.027  0.040  0.172 –0.069

Clay–clay  0.534  0.004  0.213  0.197
Silt–silt  0.335  0.142  0.326  0.131

Clay–silt  0.065  0.025  0.254  0.160

Table 5. The normalized mean absolute error (NMAE) and
the normalized root mean square error (NRMSE)

for soil nitrate–N, P, K estimation.

50% of Data Remaining
(n = 124)

75% of Data Remaining
(n = 186)

Variable NMAE NRMSE NMAE NRMSE

Using cokriging

Nitrate–N 34.5 49.9 32.8 43.9
P 22.9 28.8 20.7 26.4
K 15.3 21.4 12.0 19.0

Using ordinary kriging

Nitrate–N 33.6 48.3 32.5 44.3
P 21.2 26.8 21.5 27.1
K 15.4 21.5 13.1 19.6

Figure 3. The 186 calibration sites and 60 validation sites. About 75% of
the sampling sites are validation sites.

tions can be accurately defined with a sufficient amount of
data. At a sampling density of 2.1 sites/ha (corresponding to
186 sites in the study), the NMAE values were reduced by
9.6% and 21.6% for soil P and K, respectively, as compared
to the ordinary kriging method. A better improvement in the

estimation accuracy is expected when a higher sampling
density is used. However, the cokriging technique did not
improve the estimation accuracy at the lower sampling
density (1.4 sites/ha in the study). When a variable has a large
random variation, such as the soil nitrate–N in the study,
cokriging does not provide better estimates than ordinary
kriging.
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